SlideShare a Scribd company logo
CHAPTER IINUMERICAL APPROXIMATIONBY: MARIA FERNANDA VERGARA M.UNIVERSIDAD INDUSTRIAL DE SANTANDER
NUMERICAL APPROXIMATIONA numericalapproximationis a number X’ thatrepresentsanothernumberwhichitsexactvalueis X. X’ becomes more exactwhenisclosertotheexactvalue of XIsimportanttotakeintoaccountthisnumericalapproximationbecausenumericalsolutions are notexact, butthemainobjectiveistoget a solutionreallyclosetothe real solution.
SIGNIFICANT FIGURES“The concept of  a significant figure, ordigit, has beendevelopedtoformallydesignatethereliability of a numericalvalue. Thesignificantdigits of a number are thosethat can beusedwithconfidence. Theycorrespondtothenumber of certaindigits plus oneestimateddigit.”-Numericalmethodsforengineers, CHAPRA-.Whysignificant figures are important in numericalmethods?
ACCURACY AND PRECISION
ERROR DEFINITIONSNumericalerrorsoriginatewhenyouapproximatetorepresentexactmathematicalquantitiesoroperations. Thiserrors can be: Truncationerrorswhichhappenwhenapproximations are usedtorepresentmathemathicalprocedures; and round-off errorswhichhappenwhenyou use numberswithlimitedsignificant figures toexpressexactnumbers.ET=Real Value - Approximation
RELATIVE ERRORRelative error is a waytoaccountforthe magnitudes of thequantitiesbeingevaluatedTrue percentrelative error
EXAMPLE EXERCISEThemeasure of a bridge is 9999cm, and themeasure of a rivetis 9 cm, ifthe true values are 10.000cm and 10cm, respectively, compute the true error and the true percentrelative error foreach case.
In real worldapplications, wewillnotknowthe true value. So theprocedureistonormalizethe error usingthebestavaliableestimate of the true value:Usinaniterativeapproachto compute answers, theapproximatedrelative error
ROUND-OFF ERRORSThiskind of errorsoriginatebecausecomputers can retain a finitenumber of significant figures, so numbers as e, π, cannotbeexpressedexactly.“Truncationerrors are thosethatresultfromusinganapproximation in place of anexactmathematicalprocedure.”TRUNCATION ERRORS
THE TAYLOR SERIESThe Taylor series provides a meanstofind a functionvalue in a point, usingthefunctionvalue and itsderivatives in anotherpoint. Thetheoremsaysthatanysmoothfunction can beapproximated as polynomial.Taylor’sTheorem: Ifthefunction f  and itsfirst n+1 derivatives are continuous in anintervalcontaining a and x, thenthevalue of thefunction at x isgivenbyWhere:
BIBLIOGRAPHYCHAPRA, Steven. “Numericalmethodsforengineers”; McGraw Hill.ROCHA, Gustavo. “Métodos Numéricos”.2005

More Related Content

PDF
Estudios de-casos-internacionales-de-ciudades-inteligentes-medellin-colombia
PDF
Smart cities a lesson from barcelona
PDF
Internet of things en las smart cities
PPTX
Chapter v
PPTX
Chapter 4: Linear Algebraic Equations
PDF
Roots of polynomials
PPT
Roots of polynomials
PPT
Chapter 3: Roots of Equations
Estudios de-casos-internacionales-de-ciudades-inteligentes-medellin-colombia
Smart cities a lesson from barcelona
Internet of things en las smart cities
Chapter v
Chapter 4: Linear Algebraic Equations
Roots of polynomials
Roots of polynomials
Chapter 3: Roots of Equations
Ad

CHAPTER 2: Numerical Approximation

  • 1. CHAPTER IINUMERICAL APPROXIMATIONBY: MARIA FERNANDA VERGARA M.UNIVERSIDAD INDUSTRIAL DE SANTANDER
  • 2. NUMERICAL APPROXIMATIONA numericalapproximationis a number X’ thatrepresentsanothernumberwhichitsexactvalueis X. X’ becomes more exactwhenisclosertotheexactvalue of XIsimportanttotakeintoaccountthisnumericalapproximationbecausenumericalsolutions are notexact, butthemainobjectiveistoget a solutionreallyclosetothe real solution.
  • 3. SIGNIFICANT FIGURES“The concept of a significant figure, ordigit, has beendevelopedtoformallydesignatethereliability of a numericalvalue. Thesignificantdigits of a number are thosethat can beusedwithconfidence. Theycorrespondtothenumber of certaindigits plus oneestimateddigit.”-Numericalmethodsforengineers, CHAPRA-.Whysignificant figures are important in numericalmethods?
  • 5. ERROR DEFINITIONSNumericalerrorsoriginatewhenyouapproximatetorepresentexactmathematicalquantitiesoroperations. Thiserrors can be: Truncationerrorswhichhappenwhenapproximations are usedtorepresentmathemathicalprocedures; and round-off errorswhichhappenwhenyou use numberswithlimitedsignificant figures toexpressexactnumbers.ET=Real Value - Approximation
  • 6. RELATIVE ERRORRelative error is a waytoaccountforthe magnitudes of thequantitiesbeingevaluatedTrue percentrelative error
  • 7. EXAMPLE EXERCISEThemeasure of a bridge is 9999cm, and themeasure of a rivetis 9 cm, ifthe true values are 10.000cm and 10cm, respectively, compute the true error and the true percentrelative error foreach case.
  • 8. In real worldapplications, wewillnotknowthe true value. So theprocedureistonormalizethe error usingthebestavaliableestimate of the true value:Usinaniterativeapproachto compute answers, theapproximatedrelative error
  • 9. ROUND-OFF ERRORSThiskind of errorsoriginatebecausecomputers can retain a finitenumber of significant figures, so numbers as e, π, cannotbeexpressedexactly.“Truncationerrors are thosethatresultfromusinganapproximation in place of anexactmathematicalprocedure.”TRUNCATION ERRORS
  • 10. THE TAYLOR SERIESThe Taylor series provides a meanstofind a functionvalue in a point, usingthefunctionvalue and itsderivatives in anotherpoint. Thetheoremsaysthatanysmoothfunction can beapproximated as polynomial.Taylor’sTheorem: Ifthefunction f and itsfirst n+1 derivatives are continuous in anintervalcontaining a and x, thenthevalue of thefunction at x isgivenbyWhere:
  • 11. BIBLIOGRAPHYCHAPRA, Steven. “Numericalmethodsforengineers”; McGraw Hill.ROCHA, Gustavo. “Métodos Numéricos”.2005